1,137 research outputs found

    Alloying effects on the optical properties of Ge1x_{1-x}Six_x nanocrystals from TDDFT and comparison with effective-medium theory

    Full text link
    We present the optical spectra of Ge1x_{1-x}Six_x alloy nanocrystals calculated with time-dependent density-functional theory in the adiabatic local-density ap proximation (TDLDA). The spectra change smoothly as a function of the compositio n xx. On the Ge side of the composition range, the lowest excitations at the ab sorption edge are almost pure Kohn-Sham independent-particle HOMO-LUMO transitio ns, while for higher Si contents strong mixing of transitions is found. Within T DLDA the first peak is slightly higher in energy than in earlier independent-par ticle calculations. However, the absorption onset and in particular its composit ion dependence is similar to independent-particle results. Moreover, classical depolarization effects are responsible for a very strong suppression of the abs orption intensity. We show that they can be taken into account in a simpler way using Maxwell-Garnett classical effective-medium theory. Emission spectra are in vestigated by calculating the absorption of excited nanocrystals at their relaxe d geometry. The structural contribution to the Stokes shift is about 0.5 eV. Th e decomposition of the emission spectra in terms of independent-particle transit ions is similar to what is found for absorption. For the emission, very weak tra nsitions are found in Ge-rich clusters well below the strong absorption onset.Comment: submitted to Phys. Rev.

    Time-dependent Kohn-Sham theory with memory

    Full text link
    In time-dependent density-functional theory, exchange and correlation (xc) beyond the adiabatic local density approximation can be described in terms of viscoelastic stresses in the electron liquid. In the time domain, this leads to a velocity-dependent xc vector potential with a memory containing short- and long-range components. The resulting time-dependent Kohn-Sham formalism describes the dynamics of electronic systems including decoherence and relaxation. For the example of collective charge-density oscillations in a quantum well, we illustrate the xc memory effects, clarify the dissipation mechanism, and extract intersubband relaxation rates for weak and strong excitations.Comment: 4 pages, 4 figure

    The correlation energy functional within the GW-RPA approximation: exact forms, approximate forms and challenges

    Full text link
    In principle, the Luttinger-Ward Green's function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW-RPA approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green's functions) is necessary. Finally, we present some relevant numerical results for atomic systems.Comment: 3 figures and 3 tables, under review at Physical Review

    Fast computation of the Kohn-Sham susceptibility of large systems

    Full text link
    For hybrid systems, such as molecules grafted onto solid surfaces, the calculation of linear response in time dependent density functional theory is slowed down by the need to calculate, in N^4 operations, the susceptibility of N non interacting Kohn-Sham reference electrons. We show how this susceptibility can be calculated N times faster within finite precision. By itself or in combination with previous methods, this should facilitate the calculation of TDDFT response and optical spectra of hybrid systems.Comment: submitted 25/1/200

    Undoing static correlation: Long-range charge transfer in time-dependent density functional theory

    Full text link
    Long-range charge transfer excited states are notoriously badly underestimated in time-dependent density functional theory (TDDFT). We resolve how {\it exact} TDDFT captures charge transfer between open-shell species: in particular the role of the step in the ground-state potential, and the severe frequency-dependence of the exchange-correlation kernel. An expression for the latter is derived, that becomes exact in the limit that the charge-transfer excitations are well-separated from other excitations. The exchange-correlation kernel has the task of undoing the static correlation in the ground state introduced by the step, in order to accurately recover the physical charge-transfer states.Comment: 2 figure

    Photoelectron spectra of anionic sodium clusters from time-dependent density-functional theory in real-time

    Full text link
    We calculate the excitation energies of small neutral sodium clusters in the framework of time-dependent density-functional theory. In the presented calculations, we extract these energies from the power spectra of the dipole and quadrupole signals that result from a real-time and real-space propagation. For comparison with measured photoelectron spectra, we use the ionic configurations of the corresponding single-charged anions. Our calculations clearly improve on earlier results for photoelectron spectra obtained from static Kohn-Sham eigenvalues

    Non-adiabatic electron dynamics in time-dependent density-functional theory

    Get PDF
    Time-dependent density-functional theory (TDDFT) treats dynamical exchange and correlation (xc) via a single-particle potential, Vxc(r,t), defined as a nonlocal functional of the density n(r',t'). The popular adiabatic local-density approximation (ALDA) for Vxc(r,t) uses only densities at the same space-time point (r,t). To go beyond the ALDA, two local approximations have been proposed based on quantum hydrodynamics and elasticity theory: (a) using the current as basic variable (C-TDDFT) [G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79, 4878 (1997)], (b) working in a co-moving Lagrangian reference frame (L-TDDFT) [I. V. Tokatly, Phys. Rev. B 71, 165105 (2005)]. This paper illustrates, compares, and analyzes both non-adiabatic theories for simple time-dependent model densities in the linear and nonlinear regime, for a broad range of time and frequency scales. C- and L-TDDFT are identical in certain limits, but in general exhibit qualitative and quantitative differences in their respective treatment of elastic and dissipative electron dynamics. In situations where the electronic density rapidly undergoes large deformations, it is found that non-adiabatic effects can become significant, causing the ALDA to break down.Comment: 15 pages, 15 figure

    Spin gaps and spin-flip energies in density-functional theory

    Full text link
    Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is know about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single particle calculations tend to overestimate spin gaps while they underestimate charge gaps.Comment: 11 pages, 1 figure, 3 table

    Rydberg transition frequencies from the Local Density Approximation

    Full text link
    A method is given that extracts accurate Rydberg excitations from LDA density functional calculations, despite the short-ranged potential. For the case of He and Ne, the asymptotic quantum defects predicted by LDA are in less than 5% error, yielding transition frequency errors of less than 0.1eV.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let
    corecore